ASTM D7675-15
Standard Test Method for Determination of Total Hydrocarbons in Hydrogen by FID-Based Total Hydrocarbon (THC) Analyzer

Standard No.
ASTM D7675-15
Release Date
2015
Published By
American Society for Testing and Materials (ASTM)
Status
Replace By
ASTM D7675-22
Latest
ASTM D7675-22
Scope

5.1 Low operating temperature fuel cells such as proton exchange membrane fuel cells (PEM-FC) require high purity hydrogen for maximum material performance and lifetime. Analysis to 0.1 part per million (ppm(v)) concentration of total hydrocarbons (measured as methane) in hydrogen is necessary for ensuring a feed gas of sufficient purity to satisfy fuel cell system needs as defined in SAE J2719 or as specified in regulatory codes.

5.2 Dynamic dilution techniques using highly accurate mass flow controllers can be used with test samples that have total hydrocarbon content exceeding the upper limit of the instrument’s linear range, without the need to recalibrate the instrument using higher levels of calibration standards. The sample can be diluted with a high purity grade of hydrogen (99.999 %, so long as it contains < 0.1 ppm(v) total hydrocarbons) to achieve a result of the total hydrocarbon content by applying the appropriate dilution factor to the result. Samples that contain total hydrocarbon concentrations greater than 10008201;ppm(v) may be determined, although results will likey be achieved with reduced precision and should be analyzed by the dilution method.

5.3 Although not intended for application to gases other than hydrogen, techniques within this test method can be applied to other non-hydrocarbon gas samples requiring total hydrocarbon content determination. This can be achieved by using a zero gas and a calibration gas that consist of the same background gas as the actual sample. As an example, for the total hydrocarbon determination of nitrogen, the instrument zero point must be determined with a high purity grade of nitrogen (99.999 % and < 0.1 ppm(v) total hydrocarbons) and the instrument calibration must be done with a certified standard of methane in nitrogen in the appropriate range. This will correct for any interferences caused by the background gas.

1.1 This test method describes a procedure for total hydrocarbons (THC) measurement in hydrogen intended as a fuel for fuel cells on a methane (C1) basis. The determination of total hydrocarbons on a C1 basis is an analytical technique where all of the hydrocarbons are assumed to have the same response as methane. Sensitivity from 0.1 part per million (ppm(v), µmole/mole) up to 1000 parts per million (ppm(v), µmole/mole) concentration are achievable. Higher concentrations can be analyzed using appropriate dilution techniques. This test method can be applied to other gaseous samples requiring analysis of trace constituents provided an assessment of potential interferences has been accomplished.

1.2 This test method is an FID-based hydrocarbon analysis method without the use of separation columns. Therefore, this method does not provide speciation of individual hydrocarbons. Several varieties of instruments are manufactured and can be used for this method.

1.2.1 This method provides a measure of total hydrocarbons “as methane,” because all hydrocarbon species are quantified the same as methane response, which is the sole species used for calibration. Magnitude of the FID response to an atom of carbon is dependent on the chemical environment of this atom in the molecule. This method provides the total hydrocarbon result as if all carbon atoms are from aliphatic, aromatic, olefinic, or acetylenic compounds, where the detector response caus......

ASTM D7675-15 Referenced Document

  • ASTM D7606 Standard Practice for Sampling of High Pressure Hydrogen and Related Fuel Cell Feed Gases*2024-04-20 Update
  • ASTM D7653 Standard Test Method for Determination of Trace Gaseous Contaminants in Hydrogen Fuel by Fourier Transform Infrared (FTIR) Spectroscopy
  • ASTM D7892 Standard Test Method for Determination of Total Organic Halides, Total Non-Methane Hydrocarbons, and Formaldehyde in Hydrogen Fuel by Gas Chromatography/Mass Spectrometry
  • SAE J2719 Information Report on the Development of a Hydrogen Quality Guideline for Fuel Cell Vehicles

ASTM D7675-15 history

  • 2022 ASTM D7675-22 Standard Test Method for Determination of Total Hydrocarbons in Hydrogen by FID-Based Total Hydrocarbon (THC) Analyzer
  • 2015 ASTM D7675-15 Standard Test Method for Determination of Total Hydrocarbons in Hydrogen by FID-Based Total Hydrocarbon (THC) Analyzer
  • 2011 ASTM D7675-11 Standard Test Method for Test Method for the Determination of Total Hydrocarbons in Hydrogen by FID Based Total Hydrocarbon (THC) Analyzer
Standard Test Method for  Determination of Total Hydrocarbons in Hydrogen by FID-Based  Total Hydrocarbon (THC) Analyzer



Copyright ©2024 All Rights Reserved