ASTM C1155-95(2013)
Standard Practice for Determining Thermal Resistance of Building Envelope Components from the In-Situ Data

Standard No.
ASTM C1155-95(2013)
Release Date
1995
Published By
American Society for Testing and Materials (ASTM)
Status
Replace By
ASTM C1155-95(2021)
Latest
ASTM C1155-95(2021)
Scope

5.1 Significance of Thermal Resistance Measurements—Knowledge of the thermal resistance of new buildings is important to determine whether the quality of construction satisfies criteria set by the designer, by the owner, or by a regulatory agency. Differences in quality of materials or workmanship may cause building components not to achieve design performance.

5.1.1 For Existing Buildings—Knowledge of thermal resistance is important to the owners of older buildings to determine whether the buildings should receive insulation or other energy-conserving improvements. Inadequate knowledge of the thermal properties of materials or heat flow paths within the construction or degradation of materials may cause inaccurate assumptions in calculations that use published data.

5.2 Advantage of In-Situ Data—This practice provides information about thermal performance that is based on measured data. This may determine the quality of new construction for acceptance by the owner or occupant or it may provide justification for an energy conservation investment that could not be made based on calculations using published design data.

5.3 Heat Flow Paths—This practice assumes that net heat flow is perpendicular to the surface of the building envelope component within a given subsection. Knowledge of surface temperature in the area subject to measurement is required for placing sensors appropriately. Appropriate use of infrared thermography is often used to obtain such information. Thermography reveals nonuniform surface temperatures caused by structural members, convection currents, air leakage, and moisture in insulation. Practices C1060 and C1153 detail the appropriate use of infrared thermography. Note that thermography as a basis for extrapolating the results obtained at a measurement site to other similar parts of the same building is beyond the scope of this practice.

5.4 User Knowledge Required—This practice requires that the user have knowledge that the data employed represent an adequate sample of locations to describe the thermal performance of the construction. Sources for this knowledge include the referenced literature in Practice C1046 and related works listed in Appendix X2. The accuracy of the calculation is strongly dependent on the history of the temperature differences across the envelope component. The sensing and data collection apparatuses shall have been used properly. Factors such as convection and moisture migration affect interpretation of the field data.

5.5 Indoor-Outdoor Temperature Difference—The speed of convergence of the summation technique described in this practice improves with the size of the average indoor-outdoor temperature difference across the building envelope. The sum of least squares technique is insensitive to indoor-outdoor temperature difference, to small and drifting temperature differences, and to small accumulated heat fluxes.

5.6 Time-Varying Thermal Conditions—The field data represent varying thermal conditions. Therefore, obtain time-series data at least five times more frequently than the most frequent cyclical heat input, such as a furnace cycle. Obtain the data for a long enough period such that two sets of data that end a user-chosen time period apart do not cause the calculation of thermal resistance to be different by more than 108201;%, as discussed in 6.4.