ASTM C1674-11
Standard Test Method for Flexural Strength of Advanced Ceramics with Engineered Porosity (Honeycomb Cellular Channels) at Ambient Temperatures

Standard No.
ASTM C1674-11
Release Date
2011
Published By
American Society for Testing and Materials (ASTM)
Status
Replace By
ASTM C1674-16
Latest
ASTM C1674-23
Scope

This test method is used to determine the mechanical properties in flexure of engineered ceramic components with multiple longitudinal hollow channels, commonly described as honeycomb channel architectures. The components generally have 30 % or more porosity and the cross-sectional dimensions of the honeycomb channels are on the order of 1 millimeter or greater.

The experimental data and calculated strength values from this test method are used for material and structural development, product characterization, design data, quality control, and engineering/ production specifications.

Note 18212;Flexure testing is the preferred method for determining the nominal tensile fracture strength of these components, as compared to a compression (crushing) test. A nominal tensile strength is required, because these materials commonly fail in tension under thermal gradient stresses. A true tensile test is difficult to perform on these honeycomb specimens because of gripping and alignment challenges.

The mechanical properties determined by this test method are both material and architecture dependent, because the mechanical response and strength of the porous test specimens are determined by a combination of inherent material properties and microstructure and the architecture of the channel porosity [porosity fraction/relative density, channel geometry (shape, dimensions, cell wall thickness, etc.), anisotropy and uniformity, etc.] in the specimen. Comparison of test data must consider both differences in material/composition properties as well as differences in channel porosity architecture between individual specimens and differences between and within specimen lots.

1.1 This test method covers the determination of the flexural strength (modulus of rupture in bending) at ambient conditions of advanced ceramic structures with 2-dimensional honeycomb channel architectures.

1.2 The test method is focused on engineered ceramic components with longitudinal hollow channels, commonly called honeycomb channels. (See Fig. 1.) The components generally have 30 % or more porosity and the cross-sectional dimensions of the honeycomb channels are on the order of 1 millimeter or greater. Ceramics with these honeycomb structures are used in a wide range of applications (catalytic conversion supports (1), high temperature filters (2, 3), combustion burner plates (4), energy absorption and damping (5), etc.). The honeycomb ceramics can be made in a range of ceramic compositionsalumina, cordierite, zirconia, spinel, mullite, silicon carbide, silicon nitride, graphite, and carbon. The components are produced in a variety of geometries (blocks, plates, cylinders, rods, rings).

1.3 The test method describes two test specimen geometries for determining the flexural strength (modulus of rupture) for a porous honeycomb ceramic test specimen (see Fig. 2):

1.3.1 Test Method A8212;A 4-point or 3-point bending test with user-defined specimen geometries, and

1.3.2 Test Method B8212;A 4-point- ¼ point bending test with a defined rectangular specimen geometry (13 mm × 25 mm × > 116 mm) and a 90 mm outer support span geometry suitable for cordierite and silicon carbide honeycombs with small cell sizes.

ASTM C1674-11 history

  • 2023 ASTM C1674-23 Standard Test Method for Flexural Strength of Advanced Ceramics with Engineered Porosity (Honeycomb Cellular Channels) at Ambient Temperatures
  • 2016 ASTM C1674-16 Standard Test Method for Flexural Strength of Advanced Ceramics with Engineered Porosity (Honeycomb Cellular Channels) at Ambient Temperatures
  • 2011 ASTM C1674-11 Standard Test Method for Flexural Strength of Advanced Ceramics with Engineered Porosity (Honeycomb Cellular Channels) at Ambient Temperatures
  • 2008 ASTM C1674-08 Standard Test Method for Flexural Strength of Advanced Ceramics with Engineered Porosity (Honeycomb Cellular Channels) at Ambient Temperatures



Copyright ©2024 All Rights Reserved