ASTM G197-08
Standard Table for Reference Solar Spectral Distributions: Direct and Diffuse on 20x00B0; Tilted and Vertical Surfaces

Standard No.
ASTM G197-08
Release Date
2008
Published By
American Society for Testing and Materials (ASTM)
Status
Replace By
ASTM G197-08(2012)
Latest
ASTM G197-14(2021)
Scope

This standard does not purport to address the mean spectral irradiance incident on tilted or vertical fenestration or building-integrated systems over a day, a season, or a year. The spectral irradiance distributions have been chosen to represent a reasonable near-upper limit for solar radiation when these systems are exposed to clear-sky conditions similar to those used to calculate solar heat loads of buildings. The diffuse spectral irradiance distributions can also be used to represent conditions when these systems are shaded from the direct sun.

Absorptance, reflectance, and transmittance of solar radiation are important factors in studies of light transmission through semi-transparent plates. These properties are normally functions of wavelength, which require that the spectral distribution of the solar flux be known before the solar-weighted property can be calculated.

To compare the relative performance of competitive products by computerized simulations, or to compare the performance of products subjected to experimental tests in laboratory conditions, a reference standard solar spectral distribution for both direct and diffuse irradiance is desirable.

The table provides appropriate standard spectral irradiance distributions for determining the relative optical performance of semi-transparent materials and other systems. The table may be used to evaluate components and materials for the purpose of solar simulation where the direct and the diffuse spectral solar irradiances are needed separately.

The selected air mass value of 1.5 for a plane-parallel atmosphere above a flat earth corresponds to a zenith angle of 48.19°. The SMARTS2 computation of air mass accounts for atmospheric curvature and the vertical density profile of molecules, which results in a solar zenith angle of 48.236°, or an equivalent plane-parallel-atmosphere air mass of 1.50136. The angle of incidence computed by SMARTS for the direct beam irradiance incident on a 20°-tilted plane facing the sun is thus 28.236°. It is 41.764° for a 90°-tilted surface facing the sun.

A plot of the SMARTS model output for the reference direct radiation on a 20° and 90° tilted surfaces is shown in Fig. 1. A similar plot, but for diffuse radiation, is shown in Fig. 2.

The input needed by SMARTS to generate the spectra for the prescribed conditions and the 20°-tilted surface is provided in Table 1. The input file for the 90°-tilted surface differs only by one line. This modified line appears in Table 2.

The total irradiance, integrated over the spectral range 2804000 nm, is 791.07 and 97.96 W·m-2 for direct and diffuse radiation incident on the 20° tilted surface, respectively. It is 669.74 and 140.56 W·m-2 for direct and diffuse radiation incident on the 90° tilted surface, respectively.

The availability of the adjunct standard computer software for SMARTS allows one to (a) reproduce the reference spectra, using the above input parameters; (b) compute test spectra to attempt to match measured data at a specified FWHM, and evaluate atmospheric conditions; (c) compute test spectra representing specific conditions for analysis vis-?/span>-vis any one or all of the refere......