ASTM E2059-00a
Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry

Standard No.
ASTM E2059-00a
Release Date
2000
Published By
American Society for Testing and Materials (ASTM)
Status
Replace By
ASTM E2059-05
Latest
ASTM E2059-20
Scope

1.1 Nuclear Research Emulsions (NRE) have a long and illustrious history of applications in the physical sciences, earth sciences and biological sciences (,). In the physical sciences, NRE experiments have led to many fundamental discoveries in such diverse disciplines as nuclear physics, cosmic ray physics and high energy physics. In the applied physical sciences, NRE have been used in neutron physics experiments in both fission and fusion reactor environments (). Numerous NRE neutron experiments can be found in other applied disciplines, such as nuclear engineering, environmental monitoring and health physics. Given the breadth of NRE applications, there exist many textbooks and handbooks that provide considerable detail on the techniques used in the NRE method. As a consequence, this practice will be restricted to the application of the NRE method for neutron measurements in reactor physics and nuclear engineering with particular emphasis on neutron dosimetry in benchmark fields (see Matrix E 706).

1.2 NRE are passive detectors and provide time integrated reaction rates. As a consequence, NRE provide fluence measurements without the need for time-dependent corrections, such as arise with radiometric (RM) dosimeters (see Test Method E 1005). NRE provide permanent records, so that optical microscopy observations can be carried out anytime after exposure. If necessary, NRE measurements can be repeated at any time to examine questionable data or to obtain refined results.

1.3 Since NRE measurements are conducted with optical microscopes, high spatial resolution is afforded for fine structure experiments. The attribute of high spatial resolution can also be used to determine information on the angular anisotropy of the in-situ neutron field (,,). It is not possible for active detectors to provide such data because of in-situ perturbations and finite-size effects (see Section ).

1.4 The existence of hydrogen as a major constituent of NRE affords neutron detection through neutron scattering on hydrogen, that is, the well known (n,p) reaction. NRE measurements in low power reactor environments have been predominantly based on this (n,p) reaction. NRE have also been used to measure the 6Li ( n,t) 4He and the 10B (n,) 7Li reactions by including 6Li and 10B in glass specks near the mid-plane of the NRE (,). Use of these two reactions does not provide the general advantages of the (n,p) reaction for neutron dosimetry in low power reactor environments (see Section ). As a consequence, this standard will be restricted to the use of the (n,p) reaction for neutron dosimetry in low power reactor environments.

1.5 Limitations The NRE method possesses three major limitations for applicability in low power reactor environments.

1.5.1 Gamma-Ray SensitivityGamma-rays create a significant limitation for NRE measurements. Above a gamma-ray exposure of approximately 3R, NRE can become fogged by gamma-ray induced electron events. At this level of gamma-ray exposure, neutron induced proton-recoil tracks can no longer be accurately measured. As a consequence, NRE experiments are limited to low power environments such as found in critical assemblies and benchmark fields. Moreover, applications are only possible in environments where the buildup of radioactivity, for example, fission products, is limited.

1.5.2 Low Energy Limit In the measurement of track length for proton recoil events, track length decreases as proton-recoil energy decreases. Proton-recoil track length below approximately 3 in NRE can not be adequately measured with optical microscopy techniques. As proton-recoil track length decreases below approximately 3, it becomes very difficult to measure track length accurately. This 3 track length limit corresponds to a l......

ASTM E2059-00a history

  • 2020 ASTM E2059-20 Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry
  • 2015 ASTM E2059-15e1 Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry
  • 2015 ASTM E2059-15 Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry
  • 2006 ASTM E2059-06(2010) Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry
  • 2006 ASTM E2059-06 Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry
  • 2005 ASTM E2059-05 Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry
  • 2000 ASTM E2059-00a Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry



Copyright ©2024 All Rights Reserved